Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542207

RESUMO

The B cell receptor (BCR) signaling pathway plays a crucial role in B cell development and contributes to the pathogenesis of B cell neoplasms. In B cell malignancies, the BCR is constitutively active through both ligand-dependent and ligand-independent mechanisms, resulting in continuous Bruton tyrosine kinase (BTK) signaling activation, which provides a survival and proliferation advantage to the neoplastic clone. Among B cell malignancies, those in which the most significant results were obtained by treatment with BTK inhibitors (BTKi) include chronic lymphocytic leukemia, mantle cell lymphoma, lymphoplasmacytic lymphoma, and diffuse large B cell lymphoma. Covalent BTKi (namely ibrutinib, acalabrutinib, and zanubrutinib) functions by irreversibly blocking BTK through covalent binding to the cysteine residue 481 (Cys-481) in the ATP-binding domain. Despite the high efficacy and safety of BTKi treatment, a significant fraction of patients affected by B cell malignancies who are treated with these drugs experience disease relapse. Several mechanisms of resistance to covalent BTKi, including Cys-481 mutations of BTK, have been investigated in B cell malignancies. Non-covalent BTKi, such as pirtobrutinib, have been developed and proven effective in patients carrying both Cys-481-mutated and unmutated BTK. Moreover, targeting BTK with proteolysis-targeting chimeras (PROTACs) represents a promising strategy to overcome resistance to BTKi in B cell neoplasms.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Humanos , Adulto , Tirosina Quinase da Agamaglobulinemia , Ligantes , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico
3.
Br J Haematol ; 203(3): 416-425, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37580908

RESUMO

Here we evaluated the epigenomic and transcriptomic profile of XPO1 mutant chronic lymphocytic leukaemia (CLL) and their clinical phenotype. By ATAC-seq, chromatin regions that were more accessible in XPO1 mutated CLL were enriched of binding sites for transcription factors regulated by pathways emanating from the B-cell receptor (BCR), including NF-κB signalling, p38-JNK and RAS-RAF-MEK-ERK. XPO1 mutant CLL, consistent with the chromatin accessibility changes, were enriched with transcriptomic features associated with BCR and cytokine signalling. By combining epigenomic and transcriptomic data, MIR155HG, the host gene of miR-155, and MYB, the transcription factor that positively regulates MIR155HG, were upregulated by RNA-seq and their promoters were more accessible by ATAC-seq. To evaluate the clinical impact of XPO1 mutations, we investigated a total of 957 early-stage CLL subdivided into 3 independent cohorts (N = 276, N = 286 and N = 395). Next-generation sequencing analysis identified XPO1 mutations as a novel predictor of shorter time to first treatment (TTFT) in all cohorts. Notably, XPO1 mutations maintained their prognostic value independent of the immunoglobulin heavy chain variable status and early-stage prognostic models. These data suggest that XPO1 mutations, conceivably through increased miR-155 levels, may enhance BCR signalling leading to higher proliferation and shorter TTFT in early-stage CLL.

4.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373521

RESUMO

Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Despite its indolent clinical course, therapy refractoriness and disease progression still represent an unmet clinical need. Before the advent of pathway inhibitors, chemoimmunotherapy (CIT) was the commonest option for CLL treatment and is still widely used in areas with limited access to pathway inhibitors. Several biomarkers of refractoriness to CIT have been highlighted, including the unmutated status of immunoglobulin heavy chain variable genes and genetic lesions of TP53, BIRC3 and NOTCH1. In order to overcome resistance to CIT, targeted pathway inhibitors have become the standard of care for the treatment of CLL, with practice-changing results obtained through the inhibitors of Bruton tyrosine kinase (BTK) and BCL2. However, several acquired genetic lesions causing resistance to covalent and noncovalent BTK inhibitors have been reported, including point mutations of both BTK (e.g., C481S and L528W) and PLCG2 (e.g., R665W). Multiple mechanisms are involved in resistance to the BCL2 inhibitor venetoclax, including point mutations that impair drug binding, the upregulation of BCL2-related anti-apoptotic family members, and microenvironmental alterations. Recently, immune checkpoint inhibitors and CAR-T cells have been tested for CLL treatment, obtaining conflicting results. Potential refractoriness biomarkers to immunotherapy were identified, including abnormal levels of circulating IL-10 and IL-6 and the reduced presence of CD27+CD45RO- CD8+ T cells.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adulto , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Linfócitos T CD8-Positivos/metabolismo , Mutação Puntual , Biomarcadores Tumorais/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética
5.
Cancers (Basel) ; 15(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36831361

RESUMO

Richter Syndrome (RS) is defined as the development of an aggressive lymphoma in patients with a previous or simultaneous diagnosis of chronic lymphocytic leukemia (CLL). Two pathological variants of RS are recognized: diffuse large B-cell lymphoma (DLBCL)-type and Hodgkin lymphoma (HL)-type RS. Different molecular mechanisms may explain the pathogenesis of DLBCL-type RS, including genetic lesions, modifications of immune regulators, and B cell receptor (BCR) pathway hyperactivation. Limited data are available for HL-type RS, and its development has been reported to be similar to de novo HL. In this review, we focus on the immune-related pathogenesis and immune system dysfunction of RS, which are linked to BCR over-reactivity, altered function of the immune system due to the underlying CLL, and specific features of the RS tumor microenvironment. The standard of care of this disease consists in chemoimmunotherapy, eventually followed by stem cell transplantation, but limited possibilities are offered to chemo-resistant patients, who represent the majority of RS cases. In order to address this unmet clinical need, several immunotherapeutic approaches have been developed, namely T cell engagement obtained with bispecific antibodies, PD-1/PD-L1 immune checkpoint blockade by the use of monoclonal antibodies, selective drug delivery with antibody-drug conjugates, and targeting malignant cells with anti-CD19 chimeric antigen receptor-T cells.

7.
Cancers (Basel) ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230566

RESUMO

Richter syndrome (RS) represents the occurrence of an aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL), in patients with chronic lymphocytic leukemia (CLL). Most cases of RS originate from the direct transformation of CLL, whereas 20% are de novo DLBCL arising as secondary malignancies. Multiple molecular mechanisms contribute to RS pathogenesis. B-cell receptor (BCR) overreactivity to multiple autoantigens is due to frequent stereotyped BCR configuration. Genetic lesions of TP53, CDKN2A, NOTCH1 and c-MYC deregulate DNA damage response, tumor suppression, apoptosis, cell cycle and proliferation. Hyperactivation of Akt and NOTCH1 signaling also plays a role. Altered expression of PD-1/PD-L1 and of other immune checkpoints leads to RS resistance to cytotoxicity exerted by T-cells. The molecular features of RS provide vulnerabilities for therapy. Targeting BCR signaling with noncovalent BTK inhibitors shows encouraging results, as does the combination of BCL2 inhibitors with chemoimmunotherapy. The association of immune checkpoint inhibitors with BCL2 inhibitors and anti-CD20 monoclonal antibodies is explored in early phase clinical trials with promising results. The development of patient-derived xenograft mice models reveals new molecular targets for RS, exemplified by ROR1. Although RS still represents an unmet medical need, understanding its biology is opening new avenues for precision medicine therapy.

8.
Br J Haematol ; 198(6): 1016-1022, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35829664

RESUMO

Richter syndrome (RS) is mostly due to the direct transformation of the chronic lymphocytic leukaemia (CLL) clone, as documented by the same immunoglobulin heavy-chain variable region (IGHV) rearrangement in both CLL and RS cells. In rare cases characterized by a better outcome, the RS clone harbours a different IGHV rearrangement compared to the CLL phase. We investigated the CLL phase of clonally unrelated RS to test whether the RS clone was already identifiable prior to clinicopathologic transformation, albeit undetectable by conventional approaches. CLL cells of eight patients with unrelated RS were subjected to an ultra-deep next-generation sequencing (NGS) approach with a sensitivity of 10-6 . In 7/8 cases, the RS rearrangement was not identified in the CLL phase. In one case, the RS clone was identified at a very low frequency in the CLL phase, conceivably due to the concomitance of CLL sampling and RS diagnosis. Targeted resequencing revealed that clonally unrelated RS carries genetic lesions primarily affecting the TP53, MYC, ATM and NOTCH1 genes. Conversely, mutations frequently involved in de novo diffuse large B-cell lymphoma (DLBCL) without a history of CLL were absent. These results suggest that clonally unrelated RS is a truly de novo lymphoma with a mutational profile reminiscent, at least in part, of clonally related RS.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Aberrações Cromossômicas , Humanos , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Mutação
9.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886899

RESUMO

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represent an unmet clinical need whose prognosis is still dismal. Alterations of immune response play a prominent role in AML/MDS pathogenesis, revealing novel options for immunotherapy. Among immune system regulators, CD47, immune checkpoints, and toll-like receptor 2 (TLR2) are major targets. Magrolimab antagonizes CD47, which is overexpressed by AML and MDS cells, thus inducing macrophage phagocytosis with clinical activity in AML/MDS. Sabatolimab, an inhibitor of T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3), which disrupts its binding to galectin-9, has shown promising results in AML/MDS, enhancing the effector functions of lymphocytes and triggering tumor cell death. Several other surface molecules, namely CD33, CD123, CD45, and CD70, can be targeted with monoclonal antibodies (mAbs) that exert different mechanisms of action and include naked and conjugated antibodies, bispecific T-cell engagers, trispecific killer engagers, and fusion proteins linked to toxins. These novel mAbs are currently under investigation for use as monotherapy or in combination with hypomethylating agents, BCL2 inhibitors, and chemotherapy in various clinical trials at different phases of development. Here, we review the main molecular targets and modes of action of novel mAb-based immunotherapies, which can represent the future of AML and higher risk MDS treatment.


Assuntos
Antineoplásicos Imunológicos , Antineoplásicos , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CD47 , Humanos , Fatores Imunológicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA